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Abstract

This paper sheds light on the limitations of “pay-for-performance”in bidding mar-

kets with ex post moral hazard. High-powered incentive schemes may lead to worse

allocations. We present our analysis in a procurement setting in which potential con-

tractors differ both in their costs and levels of wealth and are protected by limited

liability. We show first that competitive mechanisms adversely select undercapitalized

firms. Second, more powerful incentive mechanisms induce less desirable allocations:

the selected contractor is likely to be at the same time less solvent and less efficient.

As a result, low-powered incentives in procurement may be optimal. This is consis-

tent with the fact, that despite the large social welfare losses arising from inadequate

performance by contractors (delays, cost overruns, deficient quality of output) in pro-

curement, powerful pay-for-performance mechanisms appear to be rare in reality.
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“One of the main lessons from working on incentive problems for 25 years is, that within

firms, high-powered financial incentives can be very dysfunctional...typically, it is best to

avoid high-powered incentives and sometimes not use pay-for-performance at all.” Bengt

Holmstrom, Nobel Prize Lecture (2016).

1 Introduction

Linking payoffs to outcomes (pay-for-performance) provides one of the most powerful eco-

nomic tools to generate incentives. However, as Holmstrom in his Nobel Prize Lecture

(quoted in the opening of the paper) pointed out, it is not difficult in reality to find situations

in which pay-for-performance incentive schemes work poorly. Common concerns expressed

about pay-for-performance refer to issues of multitasking issues and risk imposed on risk-

averse agents. In this paper we explore a different shortcoming affecting pay-for-performance

mechanisms: they may lead to worse allocations in settings involving competitive bidding

and ex post moral hazard when firms are protected by limited liability.

In this paper we identify a novel trade-off between the provision of incentives and the

efficiency of the allocation in bidding markets. The driving force for the inefficiency in the

allocation lies in firms with lower capitalization (who will be bankrupt if they fail to perform

properly and thus will face lower penalties) exerting lower effort and expecting larger net

profits from being awarded the contract. The higher the risk (the larger the incentives), the

higher the competitive advantage of less capitalized firms and thus, the worse the allocation

will turn out to be.

When all bidding firms are fully solvent, a competitive mechanism leads to the selection

of the most efficient firm for the contract or project. This is not true in a more realistic

setting, since undercapitalized firms enjoy an advantage in the bidding contest. Incentive

mechanisms using penalties (and/or bonuses) affect the actions by the contractor in two

ways: first, by directly altering the incentives of the contractor to exert effort; second, by

affecting the incentives of firms to bid, and in this way influencing the outcome of the

selection process. The higher the incentives (the penalty for mis-performance or the bonus

for good performance) the larger the likelihood of a firm with poor capitalization and higher

costs of construction to win the selection process.

This trade-off between incentives and efficiency allocation may provide relevant insights

into a number of competitive settings, especially in the design and functioning of procure-

ment contracts. In particular, it may explain why the use of pay-for-performance mecha-

nisms in procurement contracts seems to be of modest proportions compared to the size

of projects and the repercussions of inadequate performance by contractors. This is a puz-

zling observation, given the importance of procurement in the functioning of economies,
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both in developed and developing countries,1 and the correspondingly large social welfare

losses arising from poor performance in procurement contracts (delays, deficient quality of

output).2

The implementation of a procurement project would typically depend on the terms of the

procurement contract, the contractor’s effort, and also unforeseen contingencies (weather

and other external conditions, shocks to the supply of input and human resources, ran-

dom catastrophic events) that may arise during the contract’s performance. To tackle the

contractor’s moral hazard problem in such settings, one would expect to find widespread

and significant reliance on explicit incentives, given the magnitudes at stake when con-

tractor’s output is poor in terms of timing and/or quality. In reality, however, one does

not observe high-powered explicit performance incentives in procurement. The most com-

monly used contractual format appears to be a fixed price contract stipulating price, qual-

ity/performance/timing specifications, with some financial penalties if these goals are not

met.3

Penalties, moreover, seem to be low compared to the size of the negative effects from de-

lays or inferior quality. Lewis and Bajari (2011) discuss this apparent anomaly in real-world

procurement contracts, providing an illustrative example regarding highways in California:

they estimate that the social cost from delay was $1.75 million per day, while the daily

penalty for delay was merely $40, 000. Along similar lines, Lewis and Bajari (2014) use data

on Minnesota highway construction contracts and show that the penalty system at work

provided little incentives to reduce delays, and that switching to a more powerful incentive

system would increase welfare with only a small impact on contractors’ costs.4

We show there may be good efficiency reasons for the reluctance of procurement agen-

cies to resort to explicit powerful incentive schemes (penalties and/or bonuses5) to improve

the contractors’ level of effort. The implications from our analysis may also add another

1Bosio et al. (2022) report a figure of 12% of global GDP as the share claimed by government procurement
in 2018. They also report significantly larger shares for rich countries such as Switzerland, the Netherlands
or Singapore.

2Lewis and Bajari (2011, 2014) provide evidence of the large social cost of the delays in highway construc-
tion in California and Minnesota. Decarolis et al. (2016) document sizable gains from improving performance
in a case study of procurement in the electricity sector.

3The financial penalty is typically determined and exacted ex post—when the delay or defective per-
formance is observed by the sponsor—but it may take two forms: first, a retention (retainage) from the
contract price that the sponsor withholds until the project output is delivered and evaluated; second, a
fine that the sponsor has to claim from the contractor. The use of retainage is explored experimentally by
Walker et al. (2020).

4Effective penalties are even lower. Penalties are imperfectly enforceable since contractors may dispute
them in Courts. This is especially detrimental for incentives when the Court system is inefficient, as it is
shown by Coviello et al. (2018) with Italian procurement data.

5We will consider also incentive schemes involving positive payments or bonuses to the contractor, al-
though they appear to be extremely rare, despite its prevalence in other settings (employment and manage-
rial relationships). See Bigoni et al. (2014)
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explanatory factor to the empirical studies that find poorer outcomes in procurement con-

tracts in less developed countries compared to wealthier ones. This is commonly attributed

to poor institutional quality and lower public sector capabilities in the first group of coun-

tries. Perhaps also the fact that firms who are candidates for the winning the contract have

lower assets may be a contributing factor, given that this is expected to result in lower

contractors’ effort and worse allocations.

We present our analysis in a procurement setting in which a project with ex post moral

hazard has to be allocated among firms that differ in construction costs and assets (cap-

italization). Final quality of project outcome depends on the contractor’s effort level and

exogenous shocks. The contractor is protected by limited liability—the contractor cannot

pay penalties beyond its total asset level—and incentives to exert effort depend on the

incentive (the size of the penalty) and its asset size.

We show three fundamental results. First, competitive mechanisms adversely select un-

dercapitalized firms for undertaking procurement contracts with ex post moral hazard. Sec-

ond, and counterintuitively, that more powerful incentive mechanisms lead to worse allo-

cations: the winning firm is likely to be less solvent and less efficient in carrying out the

project. Increasing the size of the penalty that the sponsor imposes upon the contractor

for mis-performance worsens the allocation by granting an additional advantage to firms

with less assets. This may result in awarding the contract to a less efficient firm in terms

of performance costs. An important implication of this result is that low powered schemes

may dominate more powerful incentive mechanisms that would be optimal absent the risk

of default by the contractor. Finally, we extend the basic analysis to consider both penalties

for failing to provide proper performance and bonuses for achieving the goals set out by the

sponsor and show that the allocation does not depend on the format of the explicit incentive

(penalty or bonus), but solely on its size.6

We also extend our fundamental results to a setting in which the contractor’s perfor-

mance is a continuous variable and show them to hold as well in this more general setup.

The tools and techniques developed for addressing this challenging extension of the binary

baseline model open the scope of the present paper to apply our results in other competitive

environments.

There is an extensive literature dealing with procurement and moral hazard, but previous

contributions have analyzed other dimensions of the problem. Seminal papers by Holt (1979,

1980) and McAfee and McMillan (1986) study settings in which contractor’s effort reduces

construction costs and the principal (sponsor) chooses between fixed-price and cost-sharing

6Bigoni et al. (2014) experimentally explore the use of penalties versus bonuses in a procurement setting
and provide behavioral arguments for which the sponsors have the preference for penalties. First, penalties
allow the sponsor to use exploitative offers taking advantage of contractors’ näıveté. Second, loss aversion on
the part of sponsors, who are thereby led to offer less generous contracts with penalties than with bonuses.
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contracts. These papers mainly analyze the trade-off between the cost of transferring risks

to contractors versus providing incentives to reduce construction costs. A second generation

of papers, such as McAfee and McMillan (1987) and Laffont and Tirole (1987), characterize

the optimal contract under risk neutrality and unlimited liability. We take as given the

contract format and the procurement mechanism (the second-price auction), but consider

the probability of default and we add the firm’s financial condition as another source of firms’

private information and heterogeneity. Recently, Chakraborty et al. (2021) characterize the

optimal contract in a competitive procurement model with adverse selection and moral

hazard, in which the private information refers to the cost of effort, similar to McAfee and

McMillan (1986). They find that the “truth-telling” constraint for the less efficient type

(not to lie but to shirk ex post) matters and the associated incentive cost increases with

competition. This creates a new trade-off between efficiency in the allocation and incentives,

so that it may be optimal to limit competition or distort the allocation. We look at the

problem from a different perspective and our approach is driven by different forces, obtaining

a result along the same lines: more powerful incentives in procurement are likely to lead to

less efficient allocations.

Closely related to our work are the papers dealing with a procurement settings with

cost uncertainty and limited liability (Waehrer (1995), Zheng (2001), Calveras, Ganuza and

Hauk (2004), Engel and Wambach (2006), Board (2007), Chillemi and Mezzetti (2010) and

Burguet, Ganuza and Hauk (2012)).What this literature shows is that in the presence of cost

uncertainty, the contractors’ limited assets pave the way to the likelihood of contractors’

default, that limited liability cuts off the potential downside losses of the winning bidder,

thus inducing more aggressive bids. This effect is larger for the less solvent bidders, enhanc-

ing their chances of winning the contest for the project.7 This literature, however, does not

deal with ex post moral hazard problems in procurement, and does not consider in such a

setting the cost and the asset dimensions jointly, a factor that we deem very relevant in the

real-world procurement context.

The negative effect of the probability of default over incentives has been analyzed also

in the law and economics literature. The so-called judgement proof problem, introduced by

Shavell (1986) in a tort environment, is that when injurers are insolvent, first-best behavior

in terms of accident prevention cannot generally be attained through liability rules. In a

companion paper (Ganuza and Gomez (2020)), we analyze specifically a procurement prob-

lem in a tort setting where incentives are given by liability rules, show that the negligence

rule dominates strict liability, and argue that negligence standards lower than the first best

7Manelli and Vincent (1995) and Lopomo et al. (2022), analyze a similar adverse selection problem and
show that standard competitive mechanisms work poorly when low-cost bidders are also linked with lower
quality outcomes.
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ones may be desirable. The structure of the paper is as follows. In Section 2 we present the

basic features of the model. We solve it in Section 3. In Section 4 we show our fundamental

result that more powerful pay-for-performance schemes lead to a worse allocation. In Sec-

tion 5 we analyze the extensions dealing with penalties and bonuses, with negative markups

and with a continuous performance variable. Section 6 briefly concludes. All proofs are

relegated to the Appendix.

2 Model

We analyze a procurement setting in which a risk-neutral sponsor procures an indivisible

project for which he is willing to pay V . We assume V large enough so as to make the

possibility of not contracting unattractive for the sponsor. N firms compete for the indivis-

ible contract. Firms differ both in their cost of undertaking the project and in their initial

financial status. Let ci ≥ 0 and wi ≥ 0 denote, respectively, the cost of undertaking the

project and the value of the assets of potential contractor i = 1, 2, ..., N . Both ci and wi are

contractor i’s private information. The contract is awarded using a second-price auction.

Firms submit their bids and the winning firm is the one with the lowest bid, and the price

is set equal to the second lowest bid. Ties are resolved using a lottery.

Denote the auction price by P, and the cost and the assets of the winning firm by c and

w, respectively. To simplify the presentation, we ignore the subindex i when we refer to the

winning firm. As we will focus on the weakly dominant strategy equilibrium of the second

price auction, we do not need to specify how firms’ types (ci, wi) are distributed.

There is a performance/quality measure of the project contract θ (timeliness, quality,

etc.) that we initially assume to be binary θ ∈ {θ, θ}. The contractor may invest in effort

(for simplicity we assume it to be non-monetary) to improve performance.8 Let x be the

contractor’s monetary equivalent of the performance effort, and p(x) be the probability of

poor or inadequate performance, where p(x) is decreasing and convex in x.

The sponsor provides incentives to increase effort using a pay-for-performance mechanism

b(θ). We first consider a penalty. In case of bad performance θ, the contractor has to pay a

monetary sum b, and 0 otherwise. Then, b(θ) = −b and b(θ) = 0. Contractors have limited

liability, i.e., the losses to contractor i from the penalty cannot be larger than the firm’s

total wealth, which at that point is P − ci +wi. Therefore, contractor i will shut down and

discontinue the project if performance is of poor quality and the penalty, b, exceeds his total

wealth.

We now summarize the timing of the model:

8In Appendix B, we show that our main results hold when effort is monetary.
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1. Nature chooses the cost ci and the financial assets wi of each firm i.

2. A second-price auction takes place.

3. The winning firm receives price P, carries out the project incurring cost c, and exerts

the level of effort x. Poor performance takes place or not, according to probability

p(x). The contractor pays the penalty if P−c+w−b > 0. Otherwise, the firm declares

bankruptcy and exits.9

We want to analyze how this competitive procurement setting works and what are the

implications for the design of pay-for-performance mechanisms. For most of this analysis

we do not need to specify the sponsor’s preferences. However, for some of our results we

will assume that the sponsor’s preferences are as follows:

Us =

 V − P + θ − b(θ) no default

V + θ − c+ w −K otherwise.

This function describes the ex-post sponsor’s preferences that are determined by whether

or not the winning firm goes bankrupt. In case the winning firm completes the project, the

sponsor’s welfare depends on the price paid, the kind of performance of the project θ, and

the payment/penalty resulting from the incentive mechanism −b(θ). Bankruptcy may arise

when poor performance is observed and the winning firm is unable to pay the penalty. In

this case, the sponsor takes the remaining assets of the firm P − c + w and incurs some

default cost K.10

As a benchmark, we occasionally refer to total welfare, that may depend on the cost of

undertaking the project by the winning firm, the project’s degree of performance, the cost

of effort, and the bankruptcy costs,

W =

 V + θ − x− c non-default

V + θ − x− c−K otherwise.

3 Solving the Model

We characterize the equilibrium by backwards induction. We start with the performance

stage.

9In many real-world procurement processes, payments and costs may occur over a period of time. As
the firm can borrow funds or defer payments, this should not have an important impact over the firm’s
bankruptcy decision.

10Typically, the bankruptcy of the winning firm will be costly for the sponsor for several reasons: it may
give rise to litigation costs and delays and will entail costs to complete the project, either by deploying her
own means, or by paying a new contractor to complete the unfinished project.
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3.1 Performance Stage

In this stage, the winning bidder faces an effective monetary penalty in case of poor perfor-

mance. Due to limited liability, her penalty losses, z, are bounded by her available assets,

z = min{P − c + w, b}. Given z, the winning firm chooses a level of effort x∗(z) which

minimizes her expected total cost at the performance stage,

x∗(z) ∈ argmin p(x)z + x,

where z is the effective penalty faced by the contractor whenever poor performance occurs.

Let γ(z) be the expected private cost of poor performance for the contractor,

γ(z) = p(x∗(z))z + x∗(z). (1)

Intuitively, x∗(z) and γ(z) are increasing in z. For further results, some additional charac-

terization of γ(z) is useful. In particular, γ(0) = 0, γ(z) < b, γ′(z) = p(x∗(z)) < 1,11 and

γ′′(z) ≤ 0.

3.2 Bidding Stage

We focus on the weakly dominant strategy equilibrium of the second-price auction. In our

procurement setting, this implies that firms bid according to their total cost of undertaking

the project. Hence, the equilibrium bid of firm i is the minimum price P ∗
i for which firm i

is willing to accept the project. We start by characterizing the net expected profits of the

contractor

πN(P, c, w, b) = P − c− γ(min{P − c+ w, b})

As 0 ≤ γ′(z) ≤ 1, this net expected profits, πN are increasing in P − c and weakly

decreasing in w and b. Then, wealthier firms with higher asset levels have lower net expected

profits for a given markup P − c.

Then, the equilibrium bid is defined by:

E{πN(P
∗
i , ci, wi, b)} = 0, (2)

In other words, the equilibrium bid of firm i is the price for which her net expected profits

are zero, in case firm i wins the project.

If the firm has no risk of default, the price that makes the net expected profits zero is

equal to the total cost, construction cost and performance cost, P ∗
i = ci+γ(b). Equivalently,

11Notice that γ′(z) = ∂γ
∂z + ∂γ

∂x∗
∂x∗

∂z = ∂γ
∂z = p(x∗(z)) since by the envelope theorem ∂γ

∂x∗ = 0.
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x

γ(x+ w)

g∗(w′
i)g∗(wi)

γ(x+ wi)
γ(x+ w′

i)

Figure 1 : The equilibrium markup equation x∗ = γ(x∗ + w)

if we take the markup between the contract price and the cost as the relevant variable,

P ∗
i − ci, the non-default markup equals the expected penalty plus the expected costs of

effort summarized in γ(b).

If the firm defaults in case of poor performance, the price/bid that makes zero net ex-

pected profits is given by the expression P ∗
i = ci + γ(P ∗

i − ci + wi). Notice that the price

is defined as a fixed point since it also affects the expected total wealth at the performance

stage. We rewrite this expression in terms of a default markup function, g∗(wi) = P ∗
i − ci,

where g∗(wi) is implicitly defined by g∗(wi) = γ(g∗(wi) + wi).

Lemma 1. The default markup function, g∗(wi), is uniquely defined for each wi. It is

increasing in wi, and g∗(0) = 0.

The proof of Lemma 1 is relegated to the Appendix, albeit the underlying intuition may

be grasped from Figure 1: the default markup equation x∗ = γ(x∗+w) has a unique solution,

since γ(0 + w) > 0 and 0 < γ′(x) < 1 and γ(x∗ + w) is also increasing in w.

The default markup function is increasing in w, since, intuitively, in case of default,

wealthier firms face larger losses. There exists a cut-off level ŵ(b) = b− γ(b) such that the

default markup function is equal to the no default markup, g∗(b− γ(b)) = γ(b). If w = ŵ(b)

the firm is indifferent between making default or paying the penalty. For w > ŵ(b), firms

strictly prefer to pay the penalty and they bid according to the no default markup, γ(b).

Then, summarizing, the equilibrium bidding markup is

g(b, wi) =

 γ(b) if wi > ŵ(b) = b− γ(b)

g∗(wi) otherwise.
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Then, the equilibrium bid is P ∗
i = ci + g(b, wi). Notice that firms wealthier than ŵ(b) do

not plan to default and that this solvency threshold is increasing in the size of the penalty

b.12 In words, the larger the penalty, the larger the set of firms that may make default.

The next proposition summarizes the characterization of the bidding equilibrium, pro-

vides direct comparative statics, and a useful feature of the equilibrium markup function,

g(b, wi).

Proposition 2. The equilibrium bid in a second-price auction is P ∗
i = ci + g(b, wi), which

is increasing in ci and weakly increasing in b and wi. Moreover, g(b, wi) (and consequently

P ∗
i ) is supermodular in (b, wi).

The most important feature of this bidding equilibrium is that the equilibrium bid (prob-

ability of winning) is increasing (decreasing) in the level of assets wi of the firm. In other

words, financially weaker contractors are more likely to win the project.

It is important to notice that Proposition 2 is not an artifact of the second-price auction.

For example, under perfect information on firms’ types, the first-price auction and the

second-price auction are revenue equivalent in this setting. In other words, they induce the

same prices and allocations.13 The equivalence between both mechanisms does not extend

to private information settings. However, in the Appendix we generalize Proposition 2 by

considering general incentive compatible mechanisms in which only the winning firm receives

a transfer (as it is the case in the first-price auction). We show that incentive compatibility

in this general class of mechanisms requires to adversely selects undercapitalized firms.

In words, less capitalized firms face lower penalty expected costs, which gives them an

advantage in competitive allocation mechanisms.14 We can also illustrate Proposition 2

with the following algebraic example.

3.3 Example

Consider that p(x) = 1 −
√
x and w ∈ [0, 1]. The contractor chooses a level of care x∗(z)

which minimizes her expected total cost given the penalty losses z,

x∗(z) ∈ argmin(1−
√
x)z + x. → x∗(z) =

z2

4
(3)

Given x∗(z), the expected total cost of the penalty is

γ(z) = p(x∗(z))z + x∗(z) = z − z2

4
.

12This is also implied by 0 < γ′(x) < 1.
13A proof of this statement can be found in Appendix C.
14The intuition is as follows: In terms of direct mechanisms, a firm can always mimic the behavior of a firm

with a higher level of assets and the same cost. Then, incentive compatibility implies that the probability
of winning must be non-increasing in the level of assets.
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The equilibrium markup if the firm is solvent is γ(b) = b − b2

4
, otherwise it is given by

g∗(wi) = γ(g∗(wi) + wi). Then

g∗(wi) = γ(g∗(wi) + wi) = g∗(wi) + wi −
(g∗(wi) + wi)

2

4

This implies that g∗(wi) = −wi+
√
4wi. Notice that g

∗(wi) is increasing,
g∗(wi)
∂wi

= −1+ 1√
wi

≥
0. If ŵ = b − γ(b) = b2

4
then g∗(ŵ) = b − b2

4
= γ(b) which implies that firms with wealth

w > ŵ will not default and will pay the penalty.

The equilibrium bid is

P ∗
i =

 ci + b− b2

4
if wi > ŵ = b− γ(b) = b2

4

ci − wi +
√
4wi otherwise.

Figure 2 plots the equilibrium markup P ∗
i − ci and different values of firm wealth, wi,

and shows that undercapitalized firms bid more aggressively.

wi

Pi − ci

γ(b)

ŵ(b)

Figure 2 : The bidding equilibrium for b

4 Increasing incentives, worsening performance

The effects of increasing penalties on the outcome of the procurement process are counterin-

tuitive. The following proposition presents one of our core results: more powerful incentive

contracts may lead to worse allocations.

Proposition 3. Let (w, c) be the type of the winner under penalty b. Under any higher

penalty, b′ > b, the winner (w′, c′) will be weakly less solvent and have weakly higher costs,

i.e, w′ ≤ w and c′ ≥ c.
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Figure 3 shows the bidding equilibrium when the penalty increases from b to b′, and

illustrates the intuition of Proposition 3

wi

Pi − ci

γ(b)

ŵ(b)

γ(b′)

ŵ(b′)

Figure 3 : The bidding equilibrium when the penalty increases from b to b′,

If we increase the penalty from b to b′, bidders weakly increase their bids. Proposition 2

states that g(b, wi) and the equilibrium bid are supermodular in (b, wi). which means that

wealthier bidders will increase their bids more than bidders with lower assets. This implies

that the winner under b, either will remain the winner under b′, or will be replaced by a

firm with lower assets (since firms with lower assets than the original winner are now more

competitive in relative terms). The second part of Proposition 3 is less intuitive at first

blush: the winning firm is not only weakly less solvent, but it may also have higher costs.

This is because if one firm wins the project under b′, but loses under b < b′, the firm must

have higher costs than the winner under b, otherwise it would also have won under b. In

sum, a higher penalty may have the effect of inducing the selection of both a less solvent

and a less efficient winner.

4.1 The optimality of low powered incentive contracts.

Proposition 3 shows that more powerful incentive contracts may lead to awarding the con-

tract to a less efficient firm. In this subsection, we complement this result by showing that

increasing incentives may lead to worse overall performance and, consequently, that a low

powered incentive contract may be optimal in this setting. In order to do so, we analyze

a particular case of the parametric example of Section 3.3 by considering two bidders with

types (w1, c1) and (w2, c2) equal to (1, 0) and (0, c) respectively. We assume that the first

bidder always pays the penalty (b < 1) in case of poor performance, has zero marginal cost

11



and she bids her opportunity cost for facing the penalty, γ(b) = b − b2

4
. The opportunity

cost of the second bidder is just her cost c because she is fully insolvent, and she does not

plan to pay the penalty in the case of poor performance. As γ(b) is increasing, there exists

a cut-off b = 2(1−
√
1− c) such that γ(b) = c. Then, if b ≤ b the first bidder wins at price

c. In case of b > b the second bidder wins at price b − b2

4
. Then, this numerical example

illustrates Proposition 3: if we increase the penalty from b < b to b′ > b, the winner changes,

and the new winner under b′ is less solvent and has higher costs.

Now we move to analyze equilibrium effort levels and the performance of the project. If

b < b, the first bidder wins, and will exert the level of effort x∗
1(b) =

b2

4
. If b > b the second

firm wins, and it will exert a level of effort x∗
2(b) =

(b− b2

4
−c)2

4
. Notice that x∗

1(b) > x∗
2(b) = 0.

Then, by increasing the penalty from b < b to b′ > b, the exerted level of effort may decrease.

This highlights an unobserved additional cost of increasing incentives: the choice of effort

(and performance) may be poorer under more powerful incentives schemes. Corollary 4

summarizes this insight.

Corollary 4. Effort exerted by the winning bidder (and expected performance) is non mono-

tonic in the penalty b.

The next figure illustrates Corollary 4 for a specific value of the cost c = .64 which leads

to b = 0, 8.

b

x∗

b̄

Figure 4 : Effort exerted in Equilibrium.

When the penalty is low, the winning bidder is fully solvent. In this case, a higher penalty

translates into higher exerted effort. This happens until the penalty reaches b, when firm 2

becomes the winning firm and the exerted effort drops to zero. However, for penalties higher

than b the effort exerted by the winning firm (firm 2) depends on wealth at the performance
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stage, which is increasing in the procurement price. Then, as the procurement price weakly

increases in the penalty, exerted effort may also increase. Along this dimension, as we will

show in Figure 4, a higher price may not be necessarily bad news for the sponsor, since it

translates into higher effort and performance and a lower probability of default.

As we have discussed above, there are important private and social costs associated with

bankruptcy. Then, it is important to assess how incentives (penalties in our binary case)

affect the likelihood of bankruptcy of the competitively selected supplier. We will see that

the non-monotonicity of exerted effort with respect to the penalty (incentives) extends to

the probability of bankruptcy. The probability of default depends on the identity of the

winner, as well as on the equilibrium effort level. As long as b < b, the first firm wins

and there will be no bankruptcy. When b > b the second firm wins and bankruptcy arises,

whenever there is poor performance (since penalty is lower than the current wealth of the

firm b > γ(b) − c). However, conditioning of the second firm being the winner, the larger

the penalty, the higher the price and the lower the probability of default.

Corollary 5. The probability of bankruptcy is non monotonic in the penalty.

The next figure illustrates Corollary 4 for an specific value of the cost c = .64 which leads

to b = 0, 8.

b

PD

PD = 1

b̄

Figure 5 : The probability of bankruptcy in equilibrium

Bankruptcy arises when there is poor performance of the project and the firm is unable

to pay the entire amount of the penalty. Then, in our example, when the penalty is low,

b < b̄ the winner is a fully solvent firm and the probability of default is zero. For larger

penalties, b > b̄, firm 1 is replaced by firm 2, who has no assets and goes bankrupt in the

case of poor performance. Then, for this range of parameters (b > b̄), the higher the penalty,

13



the higher the price and the wealth of the winning firm, which translates into higher effort

and lower probability of poor performance and bankruptcy.

All these results convey the general message that increasing incentives (penalty) may

have adverse effects on performance. As a consequence of such effect, we can make the

statement that when there is a default risk it may be optimal for the sponsor to set a

penalty lower than the penalty that provides incentives to make the efficient level of effort

without a default risk, x∗ ∈ argmax{(1− p(x))θ + p(x)θ − x}
The first-best effort level without default risk is obtained by equalizing the performance

variable and the monetary incentives, b(θ) = θ. Consider that in our binary setting, θ = 0,

and θ < 0. The first-best level effort can be achieved with a penalty bE = b(θ) = θ < 0 that

we denote as the efficient penalty. However, when there is a risk of default by the winning

firm, this efficient penalty may be far from optimal.

Proposition 6. Under default risk affecting the winning firm, the efficient penalty may be

dominated by lower powered incentives schemes (lower penalties).

As a simple proof of the previous statement, we focus on our example and start with

the simple observation that bE may be higher or lower than b. Consider the specification

of the sponsor preferences we introduced in the description of the model. If bE < b, the

optimal penalty in our simple example would be trivially bE since there is no conflict between

allocation and incentives. If bE > b, this conflict arises, and indeed, b dominates bE along

several dimensions: i) better allocation, Wb = (1, 0) and WbE = (0, c), ii) lower price

γ(b) = c < γ(bE), and iii) lower probability of default PD(b) = 0 < PD(b
E) = 1 − (γ(bE)−c)

2
.

Given that, if the default cost K is sufficiently large, a penalty b lower than the efficient one

bE may be optimal.

In general, however, it is difficult to characterize the optimal penalty in this multidi-

mensional setting. In the previous example, we have assumed that the solvent firm has a

cost advantage. If both firms have the same costs, the insolvent firm would win under any

amount of the penalty and defaults whenever there is poor performance. In such a case, it

may be optimal to increase the penalty even beyond bE in order to increase the price, the

wealth of the contractor and the incentives to exert effort. However, in such a situation it

may not be optimal to auction the project in the first place.15 The auction is not selecting

the best contractors and the reduction in contractor’s rents produced by the auction may

be counterproductive in terms of performance. In other words, competition may not help

and other mechanisms (such as lotteries or negotiations) may be superior to auctions.16

15The suboptimality of auctions has been discussed in the literature that analyzes procurement settings
with cost uncertainty and limited liability, see for example Burguet, Ganuza and Hauk (2012).Manelli and
Vincent (1995) and Lopomo et al. (2022), analyze a similar adverse selection problem and show that standard
competitive mechanisms work poorly when low-cost bidders are also linked with lower quality outcomes.

16This may partially explain why private firms often use negotiations instead of auctions. Bajari, McMil-
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5 Extensions

5.1 Sticks and Carrots

In this extension, we do not impose any constraint over the pay-for-performance mechanisms

beside b(θ) < b(θ̄). Consider the possibility of using penalties and positive payments or

bonuses, for example, b(θ) < 0 and b(θ̄) > 0. We will show that transfers and allocations

generated by the pay-for-performance mechanisms do not depend on the particular penalties

and bonuses used but only on the power of the incentives scheme b(θ̄)− b(θ). In order to do

that, we will show that this more general setting is in fact equivalent to the penalty setting

solved in the baseline model.

As in the previous model, default may only occur if poor performance is observed and

P − c+ w + b(θ) < 0.17 We rewrite this condition as

P − c+ w + b(θ̄) < b(θ̄)− b(θ) ≡ b̃.

We reformulate the primitives as follows. Let

c̃ = c− b(θ̄).

This is the bonus-adjusted cost. Then, the above condition is rewritten as

P − c̃+ w < b̃.

This is analogous to the condition in the main model with c̃ and b̃; default occurs if the net

penalty, b̃, exceeds the adjusted solvency, P − c̃ + w. Using this notation, we can rewrite

the payoff of the winning firm as

P − c− p(x)min{P − c+ w,−b(θ)} − x+ (1− p(x))b(θ̄)

= P − c− p(x)min{P − c+ w + b(θ̄), b(θ̄)− b(θ)} − x+ b(θ̄)

lan, and Tadelis (2009) look at private construction contracts in Northern California and find that 43% of
them have been awarded through negotiations with a sole supplier, and only 18% used open competitive
tendering. In the same line Decarolis (2014) analyzes empirically a change in Italian public procurement
rules, forcing the use of first price auctions for public works. He finds that the increased use of auctions
between 2000 and 2006 results in significant discounts in winning bids, but also in significant deterioration
of performance from winning bidders. Similarly, Eun (2018) shows with Korean paving contract data that
reducing competition by bid screening and excluding abnormally low bids, lead to choose contractors with
higher paving costs but that this is compensated by better contractor’s performance (lower cost overruns).

17To make this point we do not need to assume b(θ̄) > 0. Firms will not default in equilibrium in the high
performance state θ̄, since in such a case they will make negative profits and the participation constraint
would not be satisfied.
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= P − c̃− p(x)min{P − c̃+ w, b̃} − x.

Hence, the use of sticks and carrots amounts to the use of only the penalty b̃ with the

bonus-adjusted cost c̃. Let

z̃ = min{P − c̃+ w, b̃}.

The optimal effort is then given by x∗(z̃), and the expected cost of effort is expressed

by γ(z̃). Then, the firms’ problem and the bidding equilibrium are equivalent to the ones

characterized in the baseline penalty-only model, just replacing c and b by c̃ and b̃. The

equilibrium bid of each firm i is then P ∗(c̃i, wi; b̃) = c̃i + g(b̃, wi) where

g(b̃, wi) =

 γ(b̃) if wi ≥ b̃− γ(b̃)

g∗(wi) otherwise.

Following the same argument as in Proposition 2, the next corollary obtains immediately:

Corollary 7. With sticks and carrots, the equilibrium bid in a second-price auction is

P ∗(c̃i, wi; b̃), which is increasing in c̃i and weakly increasing in b̃ and wi, where c̃i = ci− b(θ̄)

and b̃ = b(θ̄)− b(θ). g(b̃, wi) (and consequently P ∗
i ) is supermodular in (b̃, wi).

Now we consider two different incentive schemes b1(·) and b2(·) for which b̃ = b1(θ̄) −
b1(θ) = b2(θ̄) − b2(θ). If we analyze the firm’s equilibrium bid P ∗(c̃i, wi; b̃) = c̃i + g(b̃, wi),

by construction g(b̃, wi) has to be the same for the two incentive schemes. These bids only

differ in the adjusted cost part, c̃i = ci − b1(θ̄) and c̃i = ci − b2(θ̄). Then, the bids are the

same in the both incentive schemes except for a constant shift b1(θ̄) − b2(θ̄). This implies

that the winner and the second highest bidder are the same in both schemes, and so are the

differences between the two highest bids, and consequently, the rents of the sponsor and the

firms are the same. To summarize, we have the following result:

Proposition 8. Two different incentive schemes b1(·) and b2(·) with the same power of

incentives b̃ = b1(θ̄)− b1(θ) = b2(θ̄)− b2(θ) yield the same equilibrium allocation and distri-

bution of rents.

In the next subsection, we will illustrate Proposition 8 by computing explicitly the bidding

equilibrium for an incentive scheme that includes a bonus, and by obtaining the same

outcomes as with just the penalty b for poor performance in our baseline setting.

5.2 “Sticks and Carrots” versus Penalty-Only

In the baseline penalty setup, we have the incentive scheme b1(θ̄) = 0 and b1(θ) = −b.

Remember that the contractor’s moral hazard problem in such a case was to minimize
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p(x)z + x, where z = min{P − c+w, b}, are the expected penalty losses. Now, we consider

this alternative sticks and carrots scheme with the same power of incentive b2(θ̄) = b̄ and

b2(θ) = b such that b̄ > 0 > b and b̄− b = b.

The contractor’s incentive problem with sticks and carrots is to minimize

−(1− p(x))b̄+ p(x)zB + x. (4)

where zB = min{P−c+w,−b} is the amount of losses incurred by the contractor in the case

of poor performance, and−(1−p(x))b̄ is the reward the contractor gets for good performance

(with a negative sign since the contractor’s problem is written as a minimization problem).

If we add and subtract b̄ from this losses expression zB, we get

zB = −b̄+min{P − c+ b̄+ w, b}

Let z̃B = min{P − c̃ + w, b} be the adjusted losses, that uses the bonus adjusted cost

defined above c̃ = c − b̄. Then, if we plug zB = −b̄ + z̃B into the contractor’s objective

function, we obtain

−b̄+ p(x)z̃B + x. (5)

When we use the adjusted cost c̃ = c − b̄, the contractor’s incentive problem becomes

almost identical to the her problem when the sponsor only uses penalties (they only differ in

constant term b̄). Then, the contractor chooses optimal effort level functions with the same

shape in both cases, x∗(z) (penalties) and x̃∗(z̃B) (sticks and carrots) such that x∗(z′) =

x̃∗(z′) for all z′.

By the same token, if we plug these optimal efforts in the objective functions, we obtain

also two similar expected total cost functions γ(z) and γ(z̃B)− b̄, that should be equal to the

markup P−c in the equilibrium bidding function. If the firm is solvent, then z = zB = b and

the markup in the penalty case is γ(b) and in the sticks and carrots case it is just γ(b)− b̄.

Then, in this latter case, the markup (and the bid) is the same as in the penalty-only case

but is shifted down by the amount of the bonus b̄.

When the firm may default in the case of penalty-only incentive, we define the markup as a

function p−c = g∗(wi), which was implicitly defined by the equation g∗(wi) = γ(g∗(wi)+wi).

In the case of sticks and carrots, z̃B = p − c̃ + wi, and then the equilibrium markup is

p − c = γ(p − c̃ + wi) − b̄. This is equivalent to p − c + b̄ = p − c̃ = γ(p − c̃ + wi). Then

if we take p − c̃ = g̃(wi), we can obtain the same implicit equation for the equilibrium

g̃∗(wi) = γ(g̃∗(wi) + wi). As they are characterized by the same equation, they should be

the same function g̃∗(wi) = g∗(wi). Finally, p− c̃ = g∗(wi), using that c̃ = c− b̄ we obtain
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that the equilibrium markup is p− c = g∗(wi)− b̄ . As in the no default case, the markup

and bidding equilibrium are identical to the penalty-only case but they are shifted down by

the size of the bonus.

Given that the default markup function is increasing in w (as in the baseline penalty

model) there exists a cut-off level ̂̃w(b) such that the default markup function is equal to

the no default markup, g∗( ̂̃w(b)) − b̄ = γ(b) − b̄. As the markup equilibrium functions are

identical in the “sticks and carrots” case and the penalty-only case except that the amount

of the bonus is discounted ex ante, the cut-off level also coincides ̂̃w(b) = ŵ(b) = b − γ(b).

Therefore, the equilibrium bidding markup in the ”sticks and carrots” case is

g(b̄, b, wi) =

 γ(b)− b̄ if wi > ŵ(b) = b− γ(b)

g∗(wi)− b̄ otherwise.

Then, the equilibrium bid is P̃ ∗
i = ci + g(b̄, b, wi) = ci + g(b, wi)− b̄, which is equal to the

baseline penalty-only case but with a downward shift in the amount of the bonus b̄.

5.3 Negative Markups and Budget Constraints at the Construction Stage.

In the previous analysis we are not taking into account that when using bonuses the net

wealth at the construction stage may be negative, i.e., g(b̄, b, wi)+w < 0. In this section we

consider that firms are constrained to finance ex-ante the project with their own resources

and the markup granted by the contract. Then, this is equivalent to imposing a budget

constraint at the construction stage. Namely,

P − c+ w ≥ 0,

When the bidder follows the bidding strategy as above, this condition is violated if

P ∗
i − ci + wi = g(b, wi)− b̄+ wi < 0.

As g(b, 0) = 0, then, for wi = 0 the left hand side is negative. By the previous analysis we

know that g(b, wi) + wi is increasing and it should be positive for high values of wi. Then,

there is some level of wealth w(b̄, b) > 0 such that contractors with wi ≥ w(b̄, b) may bid

according to the bidding equilibrium with its own resources. For bidders with wi ≤ w(b̄, b),

each bid is restricted to

Pi = ci − wi.

We will observe that this may destroy the equivalence between bonuses, and more gen-

erally “sticks and carrots” schemes, and the exclusive use of penalties. We come back to
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our numerical example. When the incentive system is penalty b for poor performance, this

budget constraint is always satisfied, since markups are non-negative, as the level of wealth

is. Consider now a system with the same degree of power in incentives, but based only on

a bonus for good performance, (b̄ = b, b = 0). From the previous section we know that the

bidding equilibrium requires to shift down the bidding function downwards in the size of

the bonus, that is, in other words, to give a big discount in anticipation of future rents. In

such a situation the budget constraint may play an important role. In particular, the equi-

librium markup may be constrained by the wealth if −wi+
√
4wi−b < −wi, or equivalently,

wi < ŵ = b2

4
. If firms are constrained to finance ex-ante the project with their own wealth

and the markup, the equilibrium bid would be

P ∗
i =

 ci − b2

4
if wi ≥ ŵ = b2

4

ci − wi otherwise.

Notice that the equilibrium bidding function is weakly higher and more importantly,

weakly decreasing in the level of wealth. The winner would be weakly wealthier, and then

the equilibrium effort and project performance is better in this case than when b is purely

a penalty.

5.4 Continuous performance

In this section, we extend our baseline model for considering a continuous performance

variable, θ ∈ [θ, θ]. Let x be the contractor’s monetary equivalent of the performance effort,

with the probability distribution of θ; F (θ|x), where x orders the distribution in the first-

order stochastic dominance sense, so that greater effort increases the probability of obtaining

better performance θ, if x ≥ x′, then F (θ|x) ≤ F (θ|x′) for all θ ∈ [θ, θ].

The sponsor provides incentives to increase effort using a pay for performance mechanism

b(θ), where b(θ) is increasing and maybe positive or negative. Besides making the perfor-

mance variable a continuous one, the model remains identical to the binary case. We start

with the analysis of the performance stage.

As before, the contractor’s losses are bounded by her wealth. If P − c + w + b(θ) < 0,

then the winning firm goes bankrupt and loses P − c+w. As b(θ) is increasing, it may exist

a cut-off θ̂ such that b(θ̂) = −(P − c+ w). Given this definition, if θ < θ̂, the winning firm

goes bankrupt. Taking into account b(θ) and her current level of wealth, the winning firm

chooses a level of care xC minimizing her loss function at the performance stage18

18For consistency with the penalty baseline model, we write the optimization problem of the contractor as
a minimization problem of her expected loss at the performance stage. However, depending on the incentive
scheme b(θ), the loss function can be negative (the contractor will have positive profits at the performance
stage).
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x∗
C(θ̂) ∈ argmin

θ̂∫
θ

(P − c+ w)f(θ|x)dθ −
θ∫

θ̂

b(θ)f(θ|x)dθ + x

Let x∗
C(θ) be the effort undertaken by the fully solvent firms, i.e θ̂ = θ. We will show that

as in the baseline case, the contractor’s effort is lower as the probability of default increases.

Lemma 9. x∗
C(θ̂) is decreasing in θ̂.

Let γC(θ̂) be the expected loss of the contractor at the performance stage in the continuous

case:
θ̂∫

θ

(P − c+ w)f(θ|x∗
C(θ̂))dθ −

θ∫
θ̂

b(θ)f(θ|x∗
C(θ̂))dθ + x∗

C(θ̂)

As in the baseline case, this loss function is decreasing in the probability of default and

then, it is indirectly increasing in the current wealth of the contractor at the performance

stage.

Lemma 10. γC(θ̂) is decreasing in θ̂ and then, increasing in P − c and w.

The net expected profits of the contractor are

πN(P, c, w, b(θ)) = P − c− γC(θ̂(P − c+ w))

Now we turn to the analysis of the bidding stage. As in the initial section, we focus

on the weakly dominant strategy equilibrium of the second-price auction. Therefore, the

equilibrium bid of each firm i is the minimum price P ∗
i for which firm i is willing to accept

the project, defined by:

E{πN(P
∗
i , ci, wi, b(θ))} = 0, (6)

If the firm has no risk of default, the price that makes the net expected profits zero is

P ∗
i = ci + γC(θ). Then, the equilibrium markup, P ∗

i − ci, is equal to the expected loss in

the performance stage γC(θ) (notice that γC that can be positive or negative, depending on

b(θ)).

If a firm may default for a poor performance realization, the price that makes the net

expected profits equal to zero is given by the expression P ∗
i = ci + γC(θ̂(P

∗
i − ci + wi)).

Let g∗C(wi) be the markup in such a case, where g∗C(wi) is implicitly defined by g∗C(w) =

γC(θ̂(g
∗
C(w) + w)).

Lemma 11. g∗C(w) is uniquely defined for each w, it is increasing in w, and g∗C(0) = −b(θ).
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Similarly to the binary penalty case, the default markup function is increasing in w since

in the case of default, wealthier firms have larger losses (or lower expected profits if γC is

negative). There exists a cut-off level ŵ(b(θ)) = −b(θ)−γC(θ) such that the default markup

function is equal to no default markup, g∗C(−b(θ)−γC(θ)) = γC(θ).
19 Then, the equilibrium

bidding markup is

gC(b(θ), w) =

 γC(θ) if wi ≥ −b(θ)− γC(θ)

g∗C(wi) otherwise.

Then, the equilibrium bid is P ∗
i = ci + gC(b(θ), wi). Proposition 12 summarizes the

characterization of the bidding equilibrium, and provides direct comparative statics.

Proposition 12. The equilibrium bid in a second-price auction is P ∗
i = ci+gC(b, wi), which

is increasing in ci and weakly increasing in wi.

Proposition 12 expresses the same message for the continuous case as Proposition 2 in

the penalty binary baseline model: competitive mechanisms select undercapitalized firms.

We can also show that increasing incentives at the performance stage by means of a more

powerful pay-for-performance scheme may lead to awarding the contract to a less efficient

and less solvent firm, and to worse overall performance. Consequently, a low powered

incentive contract may also be optimal in the continuous case.

Take an arbitrary pay for performance mechanism b(θ), where b(θ) is increasing for all

θ ∈ [θ, θ]. Now, we consider a more powerful pay-for-performance scheme, b̃(θ) = (1 +

α)(b(θ)− b(θ)) + b(θ), with α > 0. Notice that b̃(θ) is an upward rotation of b(θ), and it is

a more powerful pay-for-performance scheme because fully solvent firms undertake higher

effort under b̃(θ) than under b(θ). Let x̃∗
C(θ) be the optimal effort exerted by fully solvent

firms under b̃(θ). Then, we can show that x̃∗
C(θ) ≥ x∗

C(θ). This is because the difference

between the loss functions under b̃(θ) and b(θ) of fully solvent contractors at the performance

stage

γ̃C(θ)− γC(θ) = −
θ∫

θ

α[b(θ)− b(θ)]f(θ|x)dθ ≤ 0

is increasing (as since b(θ) is increasing and x order the distribution F (θ|x) in the first-

order stochastic dominance sense). In other words, these loss functions have decreasing

differences and applying the results of Milgrom and Shannon (1994), we can conclude that

x̃∗
C(θ) ≥ x∗

C(θ).

19For checking this, assume that g∗C(ŵ) = γC(θ). Then, if we replace g∗C(ŵ) by γC(θ) in the equation

g∗C(ŵ) = γC(θ̂(g
∗
C(ŵ) + ŵ)) we obtain γC(θ) = γC(θ̂(γC(θ) + ŵ)). For this equality be true, it has to be

that ŵ is such that θ = θ̂(γC(θ) + ŵ) = b−1(−(γC(θ) + ŵ) that implies that ŵ = −b(θ)− γC(θ).
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The next step is to prove that when comparing the allocation under b̃(θ) and b(θ), we can

also state that increasing incentives may lead to worse allocations. As b̃(θ) > b(θ) for all θ ∈
(θ, θ], the expected losses at the performance stage for the fully solvent firms are lower for this

more powerful incentive scheme, γ̃C(θ) < γC(θ). This implies that the default cut-off level

is higher when higher incentives are in place, ŵ(b̃(θ)) = −b(θ)− γ̃C(θ) > ŵ(b(θ)) = −b(θ)−
γC(θ). Then, it is possible that a contractor with a level of wealth, w ∈ [ŵ(b(θ)), ŵ(b̃(θ))]

is fully solvent under b(θ) but not under b̃(θ). In such a case, this contractor would have

under b̃(θ) a competitive advantage over wealthier fully solvent contractors, and it may be

the winning firm under b̃(θ) even if it has higher costs and it would not have been the

winning firm under b(θ).

Despite the fact that a more powerful incentive scheme leads to higher effort from fully

solvent contractors, x̃∗
C(θ) ≥ x∗

C(θ), it may also induce lower exerted effort from a winning

bidder and thus, poorer performance. Firstly, because, as we show above, under a more

powerful incentive scheme, a solvent winner may be replaced by a contractor who has a risk

of default and may have lower incentives to exert effort. But even if the winner does not

change, it may have less incentives to exert effort under a more powerful incentive scheme

since it may default for a larger set of performance realizations.

Lemma 13. Consider a contractor with a level of wealth such that it defaults for θ < θ̂

under b(θ) and for θ <
̂̃
θ under b̃(θ) respectively. Then, θ̂ <

̂̃
θ.

The intuition for this result is as follows. Under a more powerful incentive scheme,

contractors will obtain higher earnings in case of high performance realizations. As in the

bidding equilibrium, contractors make zero profits with their bids. This would imply higher

losses in the poor performance realization case, which leads contractors to default for a

larger set of performance realizations. This result implies that the effort exerted by the

winning bidder is not necessarily higher under a more powerful incentive scheme, as we

state in Corollary 4 in the binary case.

Corollary 14. Effort exerted by the winning bidder (and expected performance) is non-

monotonic in the power of the incentive scheme.

The intuition for the lack of monotonicity may be easily grasped by analyzing how the

payoffs (and incentives) of the winning bidders depend on the performance realizations under

b(θ) and under b̃(θ). If θ < θ̂, the firm makes default and loses its wealth under b(θ) and

under b̃(θ). If θ ∈ [θ̂,
̂̃
θ], then the firm makes default under b̃(θ) but its payoff increases

on the performance realization under b(θ). Finally, if θ >
̂̃
θ firm does not make default,

payoffs are increasing in the performance realization but at a higher rate under b̃(θ) than

under b(θ). Then, these pay-off functions do not satisfy a single-crossing condition and the
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effort exerted under b(θ) can be higher or lower than the effort exerted under b̃(θ). We

have shown above that the effort exerted by fully solvent firms is greater under the more

powerful incentive scheme. However, we can think of examples where firms that may default

may exert lower effort under a more powerful incentive scheme. Take as, in Lemma 13, a

contractor that may default under b(θ) if θ < θ̂, and under b̃(θ) if θ <
̂̃
θ, where θ̂ <

̂̃
θ.

Consider that θ ∈ [θ, θ] = [0, 1] and there exist only two types of effort, x = c leading

to a uniform performance distribution function over the interval [0, 1] and x = c + ϵ that

leads to a three steps distribution function, zero density over the interval [0, θ̂], a constant

density equal to
̂̃θ̂̃θ−θ̂

over the interval [θ̂,
̂̃
θ] and a density of 1 over the interval [

̂̃
θ, 1]. The

effect of high effort is just to transfer all the measure on [0, θ̂] to the interval [θ̂,
̂̃
θ], and

then it generates a distribution that dominates the one generated by low effort according

to FOSD. It is clear that the contractor will choose high effort, x = c+ ϵ, under b(θ), since

b′(θ) > 0 on [θ̂,
̂̃
θ] but low effort, x = c, under b̃(θ) since the improvement of the performance

distribution will have no effect on their profit (given that it will default if the performance

realization is below
̂̃
θ).

For a more general result of the adverse effect of incentives on the allocation, in the line of

Proposition 3, we need to introduce an auxiliary lemma stating that the markup equilibrium

function has increasing differences between incentives and wealth:

Lemma 15. If the probability of default, F (θ̂|x∗
C), weakly increases as the incentive scheme

becomes more powerful for all w, the equilibrium markups have increasing differences: for

w > w′

gC(b̃(θ), w)− gC(b(θ), w) > gC(b̃(θ), w
′)− gC(b(θ), w

′).

If we compare b(θ) and b̃(θ), the condition that F (θ̂|x∗
C) weakly increases is trivially

satisfied if w > ŵ(b̃(θ)) since it is zero in both cases. For w ∈ [ŵ(b(θ)), ŵ(b̃(θ))], it

also holds generally, since the probability of default is zero for b(θ) and positive for b̃(θ).

For w < ŵ(b(θ)), as θ̂ <
̂̃
θ if the effort is lower under b̃(θ), the condition automatically

holds. Otherwise it may hold if the effect on the default probability of a higher performance

threshold under b̃(θ) compensates the also higher performance effort.

Finally, we can state in the continuous case that more powerful schemes may lead the

selection of both a less solvent and a less efficient winner.

Proposition 16. Suppose that F (θ̂|x∗
C) weakly increases as the incentive scheme becomes

more powerful. Let (w, c) be the type of the winner under b(θ), and (w̃, c̃) under a more

powerful incentive scheme b̃(θ). Then, the winner (w̃, c̃) will be weakly less solvent and have

weakly higher costs, i.e, w̃ ≤ w, and c̃ ≥ c.
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Lemma 15 states that wealthier winners decrease (weakly) less of their bids when there

is upward rotation of the incentive scheme (which gives bidders more expected rents). As

in the binary case, this implies that the winner under b(θ), either will remain the winner

under b̃(θ) or will be replaced by a firm with lower assets, since wealthier firms are now

less competitive in relative terms. Following the same argument as in Proposition 3, the

winning firm is not only weakly less solvent, but it may also have higher costs. The new

winner under b̃(θ) must have higher costs than the winner under b(θ) since otherwise it

would also have won under b(θ).

It is important to notice that we have focused on a particular way to increase the incen-

tives, namely a linear upward rotation of the initial incentive scheme, b̃(θ) = (1+α)(b(θ)−
b(θ))+b(θ). However, our results are more general in two dimensions. Firstly, following sim-

ilar arguments than in the subsection 5.1 and 5.2, it can be shown that rents and allocation

generated by b̃(θ) are invariant with respect to a parallel shift of b̃(θ) (adding or subtracting

a constant). Then, in particular our results holds for a pure rotation of the incentive scheme,

or when the more powerful incentive scheme implies a reduction in performance pay for all

states. Secondly, our results also hold when α depend on θ, as long as α(θ)′ ≥ 0 for all θ.

6 Conclusions

The trade-off between providing incentives and achieving efficient allocations affects bidding

markets generally. Perhaps most ostensibly, procurement seems to be particularly vulnera-

ble to this. If not for reasons other than sheer magnitude, procurement is of key importance

for economies of all kinds and sizes. Understanding what are the effects of rules and prac-

tices governing procurement processes is likely to prove relevant for ensuring value from

the enormous amounts of public money invested in the provision of infrastructure, goods

and services for citizens. Eventually, better understanding may lead to improvements in

the design of current arrangements and institutions at play in this sector. Our analysis, we

believe, sheds light on widespread features of procurement contracts. In particular, we ex-

plain why selection mechanisms based upon competitive bidding may favor undercapitalized

firms for undertaking projects and how, when moral hazard is present in the execution of the

contract, negatively affect the quality of outcomes. More importantly, we show that more

powerful incentives may be counterproductive, leading to worse allocations (chosen contrac-

tors will have higher costs and lower assets than their rivals) and poorer performance of the

contract. This constitutes an approach to explain the puzzling observation that, despite the

important negative effects from inadequate performance in procurement projects, sponsors

seem to deploy only mild penalties on non-performing contractors. One way to interpret

our results is that the ability of sponsors to use powerful pay-for-performance mechanism is
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limited by the distribution of assets of potential contractors. In a number of recent empirical

studies of procurement, examining the role of granting discretion to public officials in charge

of organizing the procurement process and making decisions, it has been found that granting

enhanced ability to public buyers results in selected contractors being financially larger and

less risky, more experienced as partners of that buyer, and leading to better procurement

auctions. This is the case in Coviello et al. (2018) and Coviello et al. (2022). In this spirit, in

a recent study linked to the World Bank (Bosio et al. (2022)), analyzing procurement laws,

practices and outcomes across a large dataset of countries, a clear negative relationship

between timely outcomes in procurement and income level of countries is identified. In that

paper, the driving force of the model and the empirical predictions is that in lower income

countries, the capabilities of public sector sponsors are also more limited. Discretion, thus

is largely exploited in these countries by public officials to choose less efficient contractors

who offer benefits to the awarding individuals, whereas in high income countries with solid

public sector capabilities, discretion is fruitfully used to improve contractor’s selection and,

with it, procurement outcomes (in line with Coviello et al. (2018), Coviello et al. (2022), or

Decarolis et al. (2020)). In light of our findings, one could add a different explanation for the

observed pattern. In lower income countries, the financial standing of the pool of potential

contractors is worse than in higher income ones. Therefore, in the former set of countries,

the ability of sponsors to use more ambitious incentives mechanisms is also more limited

than in the latter. Surely, looking at one side of the interaction (the sponsor, its capabili-

ties, institutional constraints and framework) is important for understanding procurement

outcomes, but keeping an eye on the other side (the pool of contracting candidates) is, we

believe, also relevant. In the end, the outcomes will result from the incentives faced by both

sides in the interaction.
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Appendices

A Proofs

Proof of Lemma 1. As g∗(wi) = γ(g∗(wi) + wi) for proving the result, we have to show

that the equation x∗ = γ(x∗+wi) has a unique solution. This follows for the features of γ(x),

that it is an increasing function, it has a slope lower than one, and γ(0 + wi) ≥ 0. Then,

γ(0+wi) ≥ 0 and given that γ′(x) ≤ 1 it cross the 45 degree line only once, x∗ = γ(x∗+wi).

Moreover, g∗(wi) is increasing in wi. Let g
∗ − γ(g∗ + wi) = 0 by taking the total derivative

(1− γ′(g∗+wi))dg
∗− γ′(g∗+wi))dwi = 0. Then, dg∗

dwi
= γ′(g∗+wi)

1−γ′(g∗+wi)
> 0. Finally, as γ(0) = 0,

the unique solution of g∗(0) = γ(g∗(0)) is g∗(0) = 0. QED

Proof of Proposition 2. The proof of the first part of the Proposition 2 (P ∗
i being

increasing in ci, and weakly increasing in b, and wi) is immediate from the arguments

in the main text. Now, we need to show that g(b, wi) is supermodular, if x′ > x then

g(b′, w)− g(b, w) is weakly increasing in w.

g(b, wi) =

 γ(b) if wi ≥ ŵ(b) = b− γ(b)

g∗(wi) otherwise.

As γ(b) has a slope lower than 1, ŵ(b) = b− γ(b) is increasing. Consider b′ > b,

g(b′, w)− g(b, w) =


γ(b′)− γ(b) if w ≥ ŵ(b′).

g∗(w)− γ(b) if ŵ(b′) ≥ w ≥ ŵ(b)

0 if w < ŵ(b)

Notice that as g∗(w) is increasing in w, g∗(ŵ(b)) = γ(b) and g∗(ŵ(b′)) = γ(b′), then

g(b′, w) − g(b, w) is a continuous and weakly increasing function of w. This implies that

g(b, w) is a supermodular function. QED

Proof of Proposition 3: Let (w′, c′) be the wealth and cost of the winning firm under

b′, and (w, c) under b. Consider contrary to the Proposition 3 that the winner under b′ is

more solvent than the winner under b, that is, w′ > w. Given that P ∗ is increasing in c and

w, and that P (w′, c′, b′) < P (w, c, b′), we must have c′ < c. Then, the next two conditions

have to be satisfied.

P (w′, c′, b′) = c′ + g(b′, w′) < c+ g(b′, w) = P (w, c, b′),

P (w′, c′, b) = c′ + g(b, w′) > c+ g(b, w) = P (w, c, b).
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They are equivalent to

g(b′, w′)− g(b′, w) < c− c′

g(b, w′)− g(b, w) > c− c′.

These two conditions imply that

g(b, w′)− g(b, w) > g(b′, w′)− g(b′, w)

or equivalently,

g(b′, w)− g(b, w) > g(b′, w′)− g(b, w′).

This leads to a contradiction with Proposition 1 , since g(b, w) is supermodular, which

implies that

g(b′, w)− g(b, w) ≤ g(b′, w′)− g(b, w′)

Finally, consider contrary to the Proposition 3, that the winner under b′ is more efficient

than the winner under b, c′ < c. The case in which the winner under b′ is also more solvent,

is discussed above. But, if the winner under b′ is more efficient and less solvent, he should

have won also under x, since her bid is lower than the bid of (w, c) for any penalty. QED

Proof of Corollaries 4 and 5: See the explanations given in the main text as well as

the example and figures 3 and 4. QED

Proof of Proposition 6 : The example provided in the main text and the discussion

after Proposition 6 is a simple proof the result. QED

Proofs of Corollary 7 and Proposition 8: Follow from the arguments of the main

text. QED

Proof of Lemma 9: We can rewrite loss function of the contractor at the performance

stage as

γC(x, θ̂) = −
θ̂∫

θ

b(θ̂)f(θ|x)dθ−
θ∫

θ̂

b(θ)f(θ|x)dθ + x

Using the results of Milgrom and Shannon (1994), it is enough to show that γC(x, θ̂) has

increasing differences. Notice that

∂γC(x, θ̂)

∂θ̂
= −b′(θ̂)F (θ̂|x)
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Given that b′(θ̂) > 0 and that x orders the distribution in the first-order stochastic

dominance sense, ∂γC(x,θ̂)

∂θ̂
is increasing in x, which concludes the proof. QED

Proof of Lemma 10: Given b(θ̂) = −(P − c + w). we rewrite the loss function γC(θ̂) as

follows

−
θ̂∫

θ

b(θ̂)f(θ|x∗
C(θ̂))dθ −

θ∫
θ̂

b(θ)f(θ|x∗
C(θ̂))dθ + x∗

C(θ̂)

Then by the envelope theorem

dγC(θ̂)

dθ̂
= −b′(θ̂)F (θ̂|x∗(θ̂)) < 0

Finally, as θ̂ = b−1(−(P − c + w)), is decreasing in P − c and w, γC is increasing in P − c

and w. QED

Proof of Lemma 11: The proof is very similar to Lemma 1 related to the binary penalty

case. We start by showing that g∗C(0) = −b(θ). Intuitively, the contractor with zero wealth

only can make zero profits when she defaults with probability one. Then, θ̂(g∗C(0))) =

b−1(−g∗C(0)) = θ which implies that g∗C(0) = −b(θ). Alternatively, γC(θ̂(g
∗
C(0))) = γC(θ) =

−b(θ).

The next step is to show that g∗C(wi) = γC(θ̂(g
∗
C(wi) + w)) has a unique solution. For

the same arguments as Lemma 1, this is because γC is increasing in w, it has a slope lower

than one (∂γC
∂w

= F (θ̂|x∗
C(θ̂)) < 1), and γC(0 + wi) > g∗C(0). Finally, we show that g∗(wi) is

increasing in wi, following also the same arguments in Lemma 1. Let g∗C − γC(g
∗
C + w) = 0

by taking the total derivative (1 − γ′
C(g

∗
C + w))dg∗C − γ′

C(g
∗
C + w))dw = 0. Then,

dg∗C
dw

=
γ′
C(g∗C+w)

1−γ′
C(g∗C+w)

> 0. This is because, 0 < γ′
C < 1.. QED

Proof of Lemma 13: We know that the bidding equilibrium mark up has to lead to zero

profit ex-ante with the optimal level of effort, we can write this condition for both incentive

schemes as follows, for b(θ):

−wF (θ̂|x∗) +

θ∫
θ̂

(b(θ) + g∗(w))f(θ|x∗)dθ − x∗ = 0

for b̃(θ)

−wF (
̂̃
θ|x̃∗) +

θ∫
̂̃θ
(b̃(θ) + g̃∗(w)))f(θ|x̃∗)dθ − x̃∗ = 0.
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If we replace in this later equilibrium condition, x̃∗ by x∗, the expected ex-ante pay-off have

to be negative since we are introducing a non optimal effort. Then, it has to be true that

−wF (θ̂|x∗) +

θ∫
θ̂

(b(θ) + g∗(w))f(θ|x∗)dθ > −wF (
̂̃
θ|x∗) +

θ∫
̂̃θ
(b̃(θ) + g̃∗(w))f(θ|x∗)dθ

Consider, contrary to the Lemma that θ̂ ≥ ̂̃
θ. Then, the previous inequalty can be written

in such a case as follows:

θ̂∫
̂̃θ
(−w − (b̃(θ) + g̃∗(w)))f(θ|x∗)dθ >

θ∫
θ̂

((b̃(θ) + g̃∗(w)− b(θ)− g∗(w))f(θ|x∗)dθ

However, the left hand side is negative (because −w < (b̃(θ) + g̃∗(w)) for θ >
̂̃
θ) and the

right hand side is positive since (because (b̃(θ) + g̃∗(w) > b(θ) + g∗(w))). Then, we have a

contradiction, which implies that θ̂ <
̂̃
θ. This concludes the proof. QED

Proof of Lemma 15: Recall:

gC(b(θ), w) =

 γC(θ) if w ≥ ŵ(b(θ)) = −b(θ)− γC(θ)

g∗C(w) otherwise.

and

gC(b̃(θ), w) =

 γ̃C(θ) if w ≥ ŵ(b̃(θ)) = −b̃(θ)− γ̃C(θ)

g̃∗C(w) otherwise.

where γ̃C(θ) and g̃∗C(w) are accordingly defined with b̃(θ).

Since b̃(θ) is a rotation of b(θ), the expected losses of performance stage for fully solvent

firms are lower under b̃(θ) than under b(θ), i.e., γ̃C(θ) < γC(θ). Noting that b̃(θ) = b(θ), we

have ŵ(b̃(θ)) > ŵ(b(θ)).

Then

gC(b̃(θ), w)− gC(b(θ), w) =


γ̃C(θ)− γC(θ) if w ≥ ŵ(b̃(θ)),

g̃∗C(w)− γC(θ) if ŵ(b̃(θ)) ≥ w ≥ ŵ(b(θ)),

g̃∗C(w)− g∗C(w) if w < ŵ(b(θ)).

Notice that as g̃∗C(w) is increasing in w, g∗C(ŵ(b(θ))) = γC(θ) and g̃∗C(ŵ(b̃(θ))) = γ̃C(θ),

then gC(b̃(θ), w)− gC(b(θ), w) is a continuous and weakly increasing function of w for w ≥
ŵ(b(θ)) as seen in the binary penalty case. To complete the proof, we need to show that

g̃∗C(w)− g∗C(w) is also weakly increasing in w.
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Recall g∗C(w) is implicitly defined by g∗C(w) = γC(θ̂(g
∗
C(w)+w)), and θ̂(g∗C(w)+w) satisfies

b(θ̂(g∗C(w) + w)) = −(g∗C(w) + w). Substituting and rearranging, we have

g∗C(w)(1− F (θ̂|x∗
C(θ̂))) = wF (θ̂|x∗

C(θ̂))−
θ∫

θ̂

b(θ)f(θ|x∗
C(θ̂))dθ + x∗

C(θ̂).

where θ̂ = θ̂(g∗C(w) + w). Differentiating with respect to w, we obtain

g∗′C (w) =
F (θ̂|x∗

C(θ̂))

1− F (θ̂|x∗
C(θ̂))

.

Under the assumption that the equilibrium probability of default weakly increases as the

incentive scheme becomes more powerful, we have

g̃∗′C (w) ≥ g∗′C (w)

Integrating this for w > w′ and rearranging,

g̃∗c (w)− g∗c (w) ≥ g̃∗c (w
′)− g∗c (w

′).

This concludes that the equilibrium markups have increasing differences. QED

Proof of Proposition 16: As Lemma 15 has stablished the supermodularity of the

markup functions, it follows from the same arguments than the proof of Proposition 3.

QED

B Monetary Care.

Let z = P − c+w be now the initial wealth (before the effort decision) at the construction

stage, of a firm that plans to make default in case of bad performance. This firm chooses a

level effort xM∗(z) which minimizes his expected total cost,

xM∗(z) ∈ argmin p(x)z + (1− p(x))x,

In case of a bad performance the firm looses all its wealth and otherwise, its cost is

limited to the exerted effort.20 Compared to the non monetary effort case, the cost of effort

is subsidized in the case of bankruptcy. Let γM(z) be the expected private cost of being

20Notice that the problem remains regular since the second order condition is satisfied, p(x)′′(z − x) −
2p′(x)) ≥ 0.
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liable when effort is monetary.

γM(z) = p(xM∗(z))z + (1− p(xM∗(z))xM∗(z).

As in the case of non monetary effort, xM∗(z) and γM(z) are increasing functions, and

γM(0) = 0, and γM ′(z) < 1. Compared with the non monetary case, when effort is monetary

and firms are not fully solvent, xM∗(z) ≥ x∗(z) (since care is partially subsidized) and γM(z)

≤ γ(z) (since liability costs are lower). However, for the fully solvent firms, the equilibrium

level of effort is the same than in the non monetary case, and then also the expected payoffs

during the contracting stage.

The equilibrium level of effort will be

xM
E (x,w) =

 x∗(b) if P − c+ w > b+ x∗(b)

xM∗(z) otherwise.

Following the arguments of the main text, we characterize the bidding equilibrium bid of

each firm i as the minimum price P ∗
i for which firm i is willing to accept the project. As in the

non monetary case, if the firm does not plan to make default in the case of bad performance,

the price that makes the net expected profits zero is PM∗
i = ci + γ(b) , and the equilibrium

markup in such case is: PM∗
i − ci = γ(b). Similarly to the main text, if the firm is not

solvent, the price that makes the net expected profits equal to zero is given by the expression

PM∗
i = ci + γM(PM∗

i − ci + wi) or, in terms of the markup, gM∗(wi) = γM(gM∗(wi) + wi),

where gM∗(wi) is unique and increasing in wi for the same arguments than in the non

monetary case. It is important to notice that γM(z) ≤ γ(z) ⇒ gM∗(wi) ≤ g∗(wi)

As in the non monetary case, there exists a cut-off level ŵM , such that the default

markup function is equal to non-default markup, γ(b). Then for this cut-off gM∗(ŵM) =

γM(γ(b) + ŵM) = γ(b). For this later equality to be true, it is necessary that γ(b) + ŵM =

b+ x∗(b). Then, the cut-off level ŵM = (1− p(x∗(b)))b, where ŵM(b) is increasing on b. As

ŵ(b) = b− γ(b) ≤ ŵM(b) = b− γ(b) + x∗(b), more types will be liable under monetary care,

but the equilibrium bidding markup is qualitatively the same:

gM(b, wi) =

 γ(b) if wi > ŵM(b)

gM∗(wi) otherwise.

In particular, gM(b, wi) is supermodular in (b, wi), if b
′ > b then gM(b′, w) − gM(b, w)−
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is weakly increasing in w. Then, the proof is identical to the non-monetary case, if b′ > b,

gM(b′, w)− gM(b, w) =


γ(b′)− γ(b) if w ≥ ŵM(b′),

gM∗(w)− γ(b) if ŵM(b′) ≥ w ≥ ŵM(b),

0 if w < ŵM(b).

As gM∗(w) is increasing in w, and by definition gM∗(ŵM(b)) = γ(b) and gM∗(ŵM(b′)) =

γ(b′), then gM(b′, w)− gM(b, w) is increasing in w. This implies that gM(b, w) and the equi-

librium bid, PM∗ = c+gM(b, w), are supermodular functions, and consequently Proposition

2 and Proposition 3 hold under monetary care.

C Revenue Equivalence between Second-Price Auction and First

Price Auction with Perfect Information.

Let P ∗
1 < P ∗

2 < ... < P ∗
i < ... < P ∗

n be the bids of the second-price auction, where we have

labeled firms according to their bids, being firm 1 the firm with the lowest bid, and firm n,

the firm with the highest bid. Hence, the outcome of the second-price auction will be that

firm 1 wins at a price equal to P ∗
2 . In a first-price auction with perfect information, there

exists a Nash equilibrium that generates the same outcome. Consider the following profile of

bidding strategies (P ∗
2 , P

∗
2 + ε, P ∗

3 , ..., P
∗
i , ..., P

∗
n) where ε is the minimum amount in which

a bid can be modified. This is a Nash equilibrium because no one can profit by unilaterally

deviating and it generates the same allocation and revenue than the second-price auction:

firm 1 wins at a price equal to P ∗
2 . Before proceeding with the proof, it is important to

notice that the bids in the second-price auction are the opportunity costs of the firm from

accepting the contract. Meaning that firm i with a price lower than P ∗
i would make negative

profits in expectation, and with a price higher than P ∗
i will make positive profits. Then,

if firm 1 deviates and bids more than P ∗
2 , she looses the contract (50% of probability of

loosing in the case of bidding P ∗
2 + ε) and gets zero instead of a positive payoff. Bidding

lower than P ∗
2 reduces directly her profits. If firm 2 deviates and bids P ∗

2 , she gets zero

profits as with the current bid. Bidding lower than P ∗
2 generates negative profits for Firm 2.

Finally, making a bid higher than P ∗
2 + ε, does not modify the allocation and consequently,

firm 2 also obtains zero profits. For some firm other than firm 1 and 2, if she bids a lower

amount, either it does not win yet, or she gets a negative payoff in case she bids lower than

the winning bid. If she bids higher, her payoff remains at zero. So this strategy profile is a

Nash Equilibrium since no profitable unilateral deviations exists.
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D General Allocation Mechanisms.

Proposition 2 in the main text states that a second-price auction mechanism adversely selects

undercapitalized firms for the project, since for a given level of private cost in delivering the

project, the lower the wealth w, the larger the probability of winning.

This market failure does not depend on the competitive mechanism used for allocating

the project, since incentive compatibility leads to adverse selection in this incentive setting

in which firms are protected by limited liability.

In order to formalize this claim, in this appendix we consider an arbitrary direct incentive

compatible mechanism Ψ(w, c), P (w, c) specifying a probability of winning Ψi and a price

Pi in the case of winning for each firm i and for every vector of assets and costs (w, c).21

We focus on the incentives of agents with the same cost, but different assets, to truthfully

reveal their types. Notice that by looking at the case of firms with identical costs and

different levels of wealth, we do not restrict the domain of the types we are considering

but we want to characterize a minimal necessary condition that must be satisfied for any

incentive compatible mechanism. In order to do so, by taking expectations over the other

types (w−i, c−i), we can redefine the mechanism according to the individual probability of

winning

Ψi(wi) = Ew−i
, c−i{Ψ(wi, w−i, c−i)}

and a distribution of prices for each wi, Pi(wi).

Proposition 17. In any IC mechanism (Ψi(wi), Pi(wi)), for which the distribution of prices

can be ranked in terms of First Order Stochastic Dominance, the probability of winning of

an individual firm, Ψi(wi), is monotonically decreasing in wi, and the expected price in case

of winning, Pi(wi), is monotonically increasing in wi.

Proof: The firm indirect utility function is

Πi(ŵ, ĉ, wi, ci) = Ψi(ŵ, ĉ)πi(Pi(ŵ, ĉ), wi)

where ŵ and ĉ refer to revealed types while wi and ci are real types. We want to analyze

the ex-ante incentives to reveal truthfully the level of assets of firms with the same cost

but different assets. For each w, Ψi(wi) is a number, and Pi(wi) is a distribution of prices.

21We are assuming that only the winning firm receives a transfer. This is consistent with the motivation
of the paper, focused on firms with different wealth levels and protected by limited liability, and moreover
it is a common feature of most of the real world procurement processes. Alternatively, we could consider,
for example, that all firms pay for participating in the auction and that the money thus raised is added to
the price paid to the winning firm, reducing or eliminating the probability of expost bankruptcy. Chillemi
and Mezzetti (2011) explores these procurement mechanisms.
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Then, we define the ex-ante profit function.

Πi(w
′
i, wi) = Ψi(w

′
i)EPi(w′

i)
{πi(P,wi)}.

Where πi(P,wi) is the profit function defined in the baseline model but to economize in

notation we are omitting the dependence of profits with respect to b and ci. Consider that

w′
i > wi. The incentive compatibility constraint on the general mechanism, Ψ(w, c), P (w, c),

has to imply the following conditions over the ex-ante incentives to reveal truthfully the

level of assets of firms with the same cost but different levels of wealth

Πi(wi, wi) ≥ Πi(w
′
i, wi) (7)

and

Πi(w
′
i, w

′
i) ≥ Πi(wi, w

′
i). (8)

Combining these two equations we obtain

Πi(wi, wi)− Πi(wi, w
′
i) ≥ Πi(w

′
i, wi)− Πi(w

′
i, w

′
i)

which is equivalent to

Ψi(wi)EPi(wi){πi(P,wi)− πi(P,w
′
i)} ≥ Ψi(w

′
i)EPi(w′

i)
{πi(P,wi)− πi(P,w

′
i)}. (9)

From Proposition 3 of the basic model, we know that πi(P,wi) − πi(P,w
′
i) is weakly

decreasing in P. Now, assume for contradiction that Pi(w
′
i) < Pi(wi) (in terms of FOSD)

since πi(P,wi)− πi(P,w
′
i) is decreasing in P, this implies that

EPi(wi){πi(P,wi)− πi(P,w
′
i)} ≤ EPi(w′

i)
{πi(P,wi)− πi(P,w

′
i)}. (10)

Given (10), inequality(9) can only be satisfied if Ψi(w
′
i) ≤ Ψi(wi). But Pi(w

′
i) < Pi(wi) and

Ψi(w
′
i) ≤ Ψi(wi) violates the incentive compatibility constraint of type w′

i (inequality (8)).

Hence Pi(w
′
i) > Pi(wi). But then Ψi(w

′
i) ≤ Ψi(wi). Otherwise, the incentive compatibility

constraint of type wi would be violated (inequality (7)). This concludes the proof.

Then, financially weaker contractors are selected with higher probability in any incentive

compatible mechanism. In our setting, the opportunity cost of undertaking the project

is decreasing in the wealth of the contractor and then, any competitive mechanism would

adversely select undercapitalized bidders.
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